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ИЗУЧЕНИЕ ОБОБЩЁННО СЖИМАЮЩЕГО ОТОБРАЖЕНИЯ 

А.А. Борубаев, И.З. Абдыкаимов 

Аннотация. В категории метрических пространств существует теорема Банаха, которая утверждает 
существование и единственность неподвижной точки для сжимающего оператора, заданного в полном 
пространстве. Равномерная структура является обобщением понятия о метрике, причём А.А. Борубаевым 
показано, как можно использовать идеи Болтянского и Сарымсакова для того, чтобы перенести часть 
утверждений, имеющих место для метрических пространств, на объекты категории равномерных пространств 
и равномерно непрерывных отображений. При этом используется понятие мультиметрического пространства. 
Любое равномерное пространство можно ассоциировать с определённой структурой мультиметрического 
пространства. Это и является основой для осуществлённости осуществлённых и осуществления 
осуществляемых в данной работе обобщений. Теорема Банаха, известная в функциональном анализе, в данной 
работе обобщена на случай линейных пространств со структурой, согласованной с равномерностью, заданной 
на соответствующем носителе. Также рассматривается категория равномерных пространств и равномерно 
непрерывных отображений и естественная категория морфизмов этой категории. В категории морфизмов 
выделяется проективный предел обратного спектра, составленного из полных равномерно непрерывных 
отображений, и изучаются некоторые его свойства.

Ключевые слова: мультиметрическое пространство; равномерность; топологическое кольцо; обобщённые 
сжимающие отображения; полное равномерное пространство; направленность Коши; предел; неподвижная 
точка; проективный предел; категория морфизмов заданной категории; обратный спектр.

ЖАЛПЫЛАНГАН КЫСУУЧУ ЧАГЫЛДЫРУУНУ ИЗИЛДӨӨ

А.А. Борубаев, И.З. Абдыкаимов

Аннотация. Метрикалык мейкиндиктер категориясында толук мейкиндикте көрсөтүлгөн кысуу оператору үчүн 
туруктуу чекиттин бар экендигин жана уникалдуулугун ырастаган Банах теоремасы бар. Бир калыпта түзүлүш 
метрика түшүнүгүнүн жалпылоосу болуп саналат жана А.А. Борубаев Болтянский менен Сарымсаковдун 
идеяларын метрикалык мейкиндиктер үчүн орун алган айрым билдирүүлөрдү бирдиктүү мейкиндиктер жана 
бирдей үзгүлтүксүз карталар категориясындагы объекттерге өткөрүү үчүн кантип колдонсо болорун көрсөттү. 
Бул учурда мультиметриялык мейкиндик түшүнүгү колдонулат. Ар кандай бирдей мейкиндик белгилүү 
бир мультиметриялык мейкиндик структурасы менен байланыштырылышы мүмкүн. Бул ишке ашырылган 
жалпылоолорду ишке ашыруу жана бул иште ишке ашыруу учун негиз болуп саналат. Функционалдык анализде 
белгилүү болгон Банах теоремасы бул эмгекте тиешелүү чөйрөдө берилген бир тектүүлүккө дал келген 
структурасы бар сызыктуу мейкиндиктердин абалына жалпыланган. Ошондой эле бирдиктүү мейкиндиктердин 
жана бирдей үзгүлтүксүз картографиялардын категориясы жана бул категориядагы морфизмдердин табигый 
категориясы каралат. Морфизм категориясында толук бирдей үзгүлтүксүз картографиялардан турган тескери 
спектрдин проекциялык чеги аныкталат жана анын кээ бир касиеттери изилденет.

Түйүндүү сөздөр: мультиметриялык мейкиндик; бир калыптуулук; топологиялык шакек; жалпыланган кысуучу 
чагылдыруу; толук бир калыптуу мейкиндик; Коши багыты; чек; туруктуу чекит; проекциялык чек; берилген 
категориядагы морфизмдердин категориясы; тескери спектр.

CONSIDERING OF GENERALIZED COMPRESSING MAPPING

A.A. Borubaev, I.Z. Abdykaimov 

Abstract. In the category of metric spaces, there is Banach’s theorem, which asserts the existence and uniqueness 
of a fixed point for a compressive operator defined in a complete space. In the category of metrical spaces there 
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is proposition, which is called as Banach’s theorem. It proposes existing and uniqueness of the fixed point of the 
compressing operator, acting on the complete metrical space. Uniformed structure is generalization of the idea about 
metrical space. It has been shown by Borubaev that, how it is possible to use ideas of Boltiansky and Sarymsakov for 
transbringing some propositions, having place for metrical spaces, to the objects of the category of uniformed spaces 
and uniformly continuous mappings. In such investigations the concept about multimetrical spaces is used. Uniformed 
structure can be associated with multimetrical one. It is the basis for having been made of made and being made 
of being made in this work generalizations. Additionally there are considered the category of uniformed spaces and 
uniformly continuous mappings and its natural category of its morphisms.. In the category of morphisms, the projective 
limit of the inverse spectrum composed of complete uniformly continuous maps is distinguished, and some of its 
properties are studied.

Keywords: multimetric space; uniformity; topological ring; generalized compressive maps; complete uniform space; 
Cauchy directivity; limit; fixed point; projective limit; category of morphisms of a given category; inverse spectrum.

Пусть дано полное равномерное пространство ( , )X U , порождённое [1] семейством псевдоме-

трик {( , ) : }X i Ii� � . Пусть оператор A X U X U: ( , ) ( , )→  соответственного пространства есть 

обобщённо сжимаемый, а именно: для любого i I∈  существует такое положительное αi  меньшее 1, 
что для любого х пространства Х верно, что

� � �i i iAx Ay x y( , ) ( , )� .	 (1)

Пространство RI , снабжённое естественной равномерностью и естественными покомпонентны-
ми операциями сложения и умножения, образует полуполе [2–4] и равномерное пространство.

Как известно [1, 2, 5], на ( , , )RI � �  равномерная структура согласована с алгебраической структу-
рой в том смысле, что данное кольцо скаляров имеет свои операции в качестве равномерно непрерыв-
ных в отношении естественной равномерности произведения на RI .

Коэффициент сжатия, взятый из RI . Направленность, индексируемую натуральными числами, 
то есть последовательность, представляемую в следующем виде ( )A bn n N∈  для некоторого b X∈ , рас-
смотрим, причём в качестве оператора А рассмотрим сжимающий в смысле (1) оператор. Для любого 
индекса i и произвольного натурального m верно, согласно (1), следующее:

� � � �i
m

i
m

i i
mAb A b Ab A A b b A b( , ) ( , ( )) ( , ).� � �1

Тогда предположим, что для некоторого натурального n выполняется, что

� � �i
n n m

i
n

i
mA b A b b A b( , ) ( , )� � .	 (1’)

Отсюда следует, что

� � � � � �i
n n m

i
n n m

i i
n n m
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то есть мы получаем, что

� � �i
n n m

i
n

i
mA b A b b A b( , ) ( , ).� � � ���1 1 1

По принципу математической индукции из вышедоказанного для произвольного n, для которого 
выполняется �� �1 , получаем, что для любых натуральных чисел m, n верно следующее:

� � �i
n n m

i
n

i
mA b A b b A b( , ) ( , )� �� .	 (2)

Однако по определению псевдометрик [1, 3, 5]

� � � � � �i
m

i i
m

i i ib A b b Ab Ab A b b Ab Ab A b A b A( , ) ( , ) ( , ) ( , ) ( , ) ( ,� � � � �2 2 mmb) ...� �
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� � � � �� � �i i i
m mb Ab Ab A b A b A b( , ) ( , ) ... ( , )2 1 .

Тогда из (2) получим, что
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Из (2) и из последнего получаем, что
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�
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Но для данного b для любого � � 0 существует такое m N∈ , что верно то, что 

( )
( , )

n m
b Ab

i
n i

i

� ��
�

��
�

�
�

1
. Поэтому, согласно (3) для заданного b X∈  для любого � � 0 , суще-

ствует такое k N∈ , что верно то, что ( ) ( , )n k A b A bi
n n m� �� ��� � . Тогда получим, что для задан-

ного b X∈  для любого � � 0  существует такое k N∈ , что верно то, что 
( , ) ( , )n k m N A b A bi

n n m� � �� ��� � . Следовательно, для заданного b X∈ верно, что направлен-

ность ( )A bn n N∈  есть направленность Коши в псевдометрическом пространстве ( , )X iρ  по определе-
нию направленности Коши [1, 3, 5, 6]. Ввиду того, что при этом нами рассмотрен произвольный ин-
декс i I∈ , получаем, что в отношении любого псевдометрического пространства ( , )X iρ , где i I∈ , 

верно, что ( )A bn n N∈  есть направленность Коши в нём. Тогда по свойствам супремумов [6, 7, 8] верно, 

что, поскольку (X,U) есть супремум равномерностей псевдометрик семейства {( , ) : }X i Ii� � , то из 

того, что ( )A bn n N∈  есть направленность Коши в отношении каждой из равномерностей соответствен-

ного семейства, следует, что ( )A bn n N∈  есть направленность Коши в их супремуме, то есть в (X,U). Но 

(X,U) полно [1, 2, 6], а значит ( )A bn n N∈  имеет предел в нём. Обозначим его как х. Это пригодится 
нам позже.

Рассмотрим произвольное покрытие канонической базы супремума равномерностей [1, 2, 4, 5, 7] 
рассматриваемого семейства: � �{ : , ..., }�i

r

k
k n1 , где i I Uk i

r
ik k

� �, �  для каждого k=1,…,n. Здесь 

� �i
r

x i
r

x i
r

ik k k k
O x X O y x y r� � � �{ : }, { : ( , ) }, , . Рассмотрим произвольный элемент Ox i

r

k,  произвольно-

го покрытия βi
r

k
 из набора. 

Рассмотрим произвольное � � 0 . Тогда для любых х и у, для которых выполняется то, что 

�
�
�i
i

k
x y( , ) � , верно, что � � � �i i ik k k

Ax Ay x y( , ) ( , )� � . По определению равномерно непрерывного 

отображения [9] это означает, что А равномерно непрерывно. Тогда с точки зрения другого определе-
ния равномерной непрерывности [1] для произвольного покрытия βi

r

k
 из указанного выше набора вер-

но, что A Ui
r

ik k

� �1( )� . Тогда по свойствам равномерных покрытий [1] 

A k n A k ni
r

i
r

k k

� �� � � � �1 11 1( { : , ..., }) { : , ..., }� �  есть равномерно. А так как � �{ : , ..., }�i
r

k
k n1  
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является при этом произвольным равномерным покрытием из канонической базы [1, 2] равномерно-
сти U, то по свойствам равномерностей и равномерно непрерывных отображений [1, 3, 9] верно, что 
прообраз при А любого равномерного покрытия есть равномерное покрытие, что означает, что А есть 
равномерно непрерывный оператор. Тогда А непрерывен по свойствам равномерно непрерывных ото-
бражений в отношении индуцированных равномерностью U топологии [1, 2, 4, 5, 7]. Но по вышепока-
занному существует точка х, для которой верно то, что x A bn n N� �lim(( ) ) , тогда ввиду непрерывно-
сти А верно, что

Ax A A b A b A b xn
n N

n
n N

n
n N� � � ��

�
� �(lim( ) ) lim(( ) ) lim(( ) )1 	 (4)

по свойствам непрерывных отображений [1, 4, 7].
Таким образом, согласно (4), нами получено, что существует такая точка х пространства Х, что 

Ах = х, то есть доказана следующая теорема.
Теорема 1. Для сжимающего, в смысле (1), оператора существует неподвижная точка, и при том 

она у него единственна.
В частности, если для любого i I∈  существует такое одно и то же положительное � �i � , мень-

шее 1, что для любого х пространства Х верно, что

� �i iAx Ay a x y( , ) ( , )� , 	 (5)

то аналогично приведённым выше рассуждениям для частного случая, который относится к тому, что 
для любого i I∈  верно, что �i a� , получим, что: если для любого i I∈  существует такое одно и то 

же положительное �i a� , меньшее 1, то существует такая точка х пространства Х, что Ах = х, и при-
том – единственная.

Таким образом, в результате произведённых рассуждений понимаем, что оператор А, который яв-
ляется сжимающим в том смысле, что для любых х и у и некоторого a < 1 выполняется соотношение 
(5), имеет единственную неподвижную точку, то есть доказана следующая теорема.

Теорема 2. Для сжимающего, в смысле (5), отображения существует неподвижная точка и при 
том – единственная.

Теперь рассмотрим категорию равномерных пространств и равномерно непрерывных отображе-
ний [1, 2, 4, 10] и категорию её морфизмов [1, 4, 8]. Язык теории категорий [8] позволяет универсаль-
ным образом изъясняться в отношении объектов математических структур совершенно разной мате-
матической природы. В частности, в отношении равномерной топологии теория категорий позволяет 
рассматривать соответствующие категории [1, 4]. Поэтому возможно выделить в этих категориях по-
нятия, которые относятся к абстрактной теории категорий, и рассмотреть эти понятия в отношении 
конкретных представлений, которые имеют место именно в теории равномерной топологии. А имен-
но, будет совершена попытка сформулировать, рассмотреть и доказать следующее утверждение. Оно 
касается абстрактно-категориального понятия проективного предела [8], однако формулируемо в свя-
зи с конкретными представлениями, относящимися именно к теории равномерной топологии.

Теорема 3. В категории морфизмов категории равномерных пространств проективный предел об-
ратного спектра, составленного из полных равномерно непрерывных отображений, является полным 
равномерно непрерывным отображением.

Доказательство. Рассмотрим семейство равномерно непрерывных отображений fi  различных 

равномерных пространств ( , )X Ui i  для i I∈  в равномерные пространства ( , )Y Vi i , для которого су-

ществуют равномерно непрерывные отображения �ij j j i iX U X U: ( , ) ( , )�  и �ij j j i iY V Y V: ( , ) ( , )� , 

связывающие fi  и f j  между собой при помощи композиции для любых i j I, ∈ , для которых i j< : 
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� �ij j i ijf f� , где I – направленное множество. Для любой пары i j I, ∈ , в которой i j< , можно ин-

терпретировать отображения fi  и f j  в качестве объектов категории равномерно непрерывных отобра-

жений [1, 8], а упорядоченную пару ( , )� �ij ij  – в качестве морфизма [4, 8], связывающего объект fi  

с объектом f j . Таким образом, мы получаем обратный спектр в отношении категории равномерно не-

прерывных отображений [8], который составлен из объектов { : }f i Ii ∈ и морфизмов, соответствую-

щих упорядоченным парам из набора {( , ) : , , }� �ij ij i j i j I� � . Таким образом, для рассматриваемо-

го обратного спектра верно будет то, что для каждой пары индексов i j I, ∈ , для которых i<j, верно, 

что � �ij j i ijf f� .

Пусть отображение f X U Y V: ( , ) ( , )→  является проективным пределом обратного спектра, со-

ставленного из набора объектов { : }f i Ii ∈  и набора морфизмов, связывающих соответственные объ-

екты, {( , ) : , , }� �ij ij i j i j I� �  в отношении категории равномерно непрерывных отображений. Это 

означает [8], что существует такой набор морфизмов {( , ) : }� �i i i I� , что для любого Ii∈  верно 

следующее соотношение: f fi i i� �� , а для любых i j i j I� �, ,  будет верно, что � � �i ij j� , 

� � �i ij j� , то есть коммутативной является [8] следующая диаграмма для любых i j i j I� �, ,  (рису-

нок 1):

Рисунок 1 – Диаграмма для любых i j i j I� �, ,

Рассмотрим случай, когда все отображения из рассматриваемого набора { : }f i Ii ∈ являются пол-
ными [1]. Тогда выделим произвольный фильтр Коши ℑ  пространства (Y,V), для которого его образ 
f ℑ  сходится. Тогда выделим [1, 2, 5] точку у, к которой сходится f ℑ . Ввиду непрерывности равно-

мерно непрерывных отображений относительно индуцируемых равномерностями топологий получа-
ем [1, 2, 4, 5, 7], что тогда для любого i I∈  фильтр � i f �  сходится к точке ψ i y( ) . Однако, согласно 

вышеобозначенному, f fi i i� �� , а значит фильтр fi i� �  сходится к точке ψ i y( ) . Для каждого i I∈  
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при этом верно, что fi  полно согласно рассмотрению, следовательно [1] из того, что fi i� �  сходится 

к точке ψ i y( )  в пространстве ( , )Y Vi i  следует, что �i�  тоже сходится к некоторой точке xi  в про-

странстве ( , )X Ui i . 

Итак, для любого i I∈  фильтр �i�  сходится к некоторой точке xi  в пространстве ( , )X Ui i . Со-
гласно вышеописанному получаем, что равномерное пространство (X,U) в категории равномерных 
пространств и равномерно непрерывных отображений является проективным пределом [1, 8] обратно-
го спектра, составленного из объектов набора ( , )X Ui i  для i I∈  и морфизмов из набора 

{ : , , }�ij i j i j I� � . Поэтому равномерное пространство (X,U) равномерно изоморфно равномерному 

пространству [1, 4, 8], составленному из всевозможных упорядоченных наборов семейства 
{( ) : ( : ( ), , )}x i j x x i j Ik k I i ij j� � � ��  и наделённому наименьшей равномерностью, для которой 

все отображения канонических проекций семейства { : }�i i I�  являются равномерно непрерывными. 
Поэтому равномерность U является супремумом [1, 4, 8] псевдоравномерностей, индуцированных 
прообразами равномерностей семейства { : }U i Ii ∈ , соответственно, при отображениях из семейства 

{ : }�i i I�  при соответственных индексах. Однако соответственная псевдоравномерность c базой 

�i iU
�1  является наименьшей псевдоравномерностью [1–5, 7], при которой теоретико-множественное 

отображение φi  равномерно непрерывно. Поэтому прообраз каждого фильтра F Коши пространства 

( , )X Ui i  имеет в качестве точки прикосновения каждую точку прообраза точки прикосновения 
фильтра F. 

Значит для произвольного i I∈  и для фильтра �i�  верно, что � �i i
� �1  также имеет точку прикос-

новения в псевдоравномерном пространстве ( , )X Ui i��1 . Так как � �i i
� � � �1 , а у каждого фильтра Ко-

ши существует единственный эквивалентный ему минимальный фильтр Коши, то � �i i
� �1  и ℑ  имеют 

один и тот же эквивалентный им обоим минимальный фильтр Коши, и поэтому они имеют одинаковые 
точки прикосновения. Значит, ℑ  имеет в качестве точки прикосновения каждую точку из прообраза 
точки xi  при канонической проекции φi . Тогда точка пространства Х, равная упорядоченному набору, 

составленному из соответственных точек x xi i i I: ( ) ∈ , является точкой прикосновения ℑ  в отношении 

каждого псевдоравномерного пространства из набора {( , ) : }X U i Ii i�� �1 . Поскольку супремум про-

странств набора {( , ) : }X U i Ii i�� �1  является пространством (X,U), а точка, являющаяся точкой при-
косновения некоторого фильтра в каждом пространстве некоторого набора, является [1, 2, 4] точкой 
прикосновения этого фильтра в супремуме пространств этого набора, то из вышеуказанного получаем, 
что ( )xi i I∈  является точкой прикосновения фильтра ℑ  пространства (X,U). Значит для произвольного 
фильтра Коши ℑ  пространства (Y,V), для которого его образ f ℑ  сходится, оказалось, что ℑ  тоже схо-
дится. Следовательно, по определению [1] полного отображения f является полным.

Пусть для каждого i I∈  фильтр �i�  сходится к некоторому значению yi . Тогда рассмотрим про-

извольную точку xi  из прообраза точки yi . Выделим произвольное покрытие α  из �i iU
�1 . Выделим 

произвольное множество F ' семейства � �i i
� �1 . Для F '  есть F � � , для которого F Fi i' � �� �1 . 



Вестник КРСУ. 2025. Том 25. № 12 17

А.А. Борубаев, И.З. Абдыкаимов  

Очевидно [1–5, 7], φiF  имеет непустое пересечение с некоторым A i��� , для которого y Ai ∈ . Тогда 

� �i iF
�1  имеет непустое пересечение с �i A

�1 . Но � �� �
i iU

1  означает, что существует � � � �� � �Ui i i: .1  

� � � �i i i i iU U� ��1 , если φi  сюръективно. Значит � � � � � � � � � � �i i i i i i i i iA� � � � �� � � �1 1 1 1 1 , если φi  

сюръективно. Поэтому � �i iF
�1  имеет непустое пересечение с � �i A

� �1 . Но y A x Ai i i� �� � �� 1 . 

Итак, произвольное F '  семейства � �i i
� �1  имеет непустое пересечение с некоторым множеством 

покрытия α , содержащим xi . Поэтому получаем, что из произвольности рассмотрения α  из �i iU
�1  

каждое множество F '  семейства � �i i
� �1  пересекается некоторым множеством покрытия α , содержа-

щим прообраз yi . Значит [1–3, 5], фильтр с базой � �i i
� �1  имеет в качестве точки прикосновения в про-

странстве ( , )X Ui i��1  каждую точку прообраза yi . Поэтому, ввиду произвольности рассмотрения 

i I∈ , получаем, что для любого i I∈  фильтр с базой � �i i
� �1  имеет в качестве точки прикосновения 

в пространстве ( , )X Ui i��1  каждую точку прообраза соответственной точки yi .
Так же, как это указано выше, будем иметь в виду, что в псевдоравномерном пространстве, как 

и в равномерном пространстве [1, 2, 4–6] для каждого фильтра Коши есть единственный эквивалент-
ный ему минимальный фильтр Коши, а эквивалентные фильтры Коши имеют одни и те же точки при-
косновения. При этом также полагаем, что содержать некоторый минимальный фильтр Коши и быть 
эквивалентным ему для любого фильтра Коши псевдоравномерного пространства есть одно и то же, 
как и для фильтров Коши равномерного пространства [1–4, 10, 11]. Таким образом, утверждение, в от-
ношении которого мы ведём доказательство его верности, является нами только что доказанным.

Заключение. Для теоремы Банаха существуют обобщения на случай рассмотрения мультиметри-
ческих пространств [12]. При этом, поскольку [1, 2, 4, 5] отделимая равномерность может быть ин-
терпретирована в качестве семейства псевдометрик, различающего точки, а структуру, определяемую 
в форме такого различающего точки семейства псевдометрик, можно представить в форме мультиме-
трики [12], то теорема Банаха обобщаема на случай отделимых равномерных пространств. А именно: 
в равномерном пространстве оператор, являющийся сжимающим в смысле сжимания по всем компо-
нентам семейства метрик, задающего соответствующую равномерность, имеет неподвижную точку 
при полноте соответственного пространства. Соответствующий оператор является сжимающим в от-
ношении существования элемента полуполя значений мультиметрики [12], имеющего только компо-
ненты, меньшие 1, и производящего образ при данной мультиметрике произвольной пары точек эле-
ментом того же полуполя только с компонентами, превосходящими соответствующие компоненты 
элемента, являющегося образом при отображении мультиметрикой [12] для пары, составленной из об-
разов соответствующих точек рассматриваемой пары, получаемых отображением этих точек соответ-
ственно рассматриваемым оператором. Рассматриваема была категория морфизмов [8] в отношении 
категории равномерных пространств и равномерно непрерывных отображений [1]. Изучаемы были не-
которые свойства проективного предела обратного спектра [1, 8] внутри этой категории, составленно-
го из полных равномерно непрерывных отображений.

Поступила: 17.11.2025; рецензирована: 01.12.2025; принята: 03.12.2025.
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