УДК 556.048:504.4:627.141.1(575.23)

DOI: 10.36979/1694-500X-2025-25-8-234-237

РАСЧЕТ ИНДЕКСА СЕЛЕОПАСНОСТИ НА ПРИМЕРЕ БАССЕЙНА РЕКИ ТАЛДЫ-СУУ ТЮПСКОГО РАЙОНА ИССЫК-КУЛЬСКОЙ ОБЛАСТИ

Г.А. Шабикова, А.А. Алмазбекова

Аннотация. Созданы цифровые карты с применением Quantum GIS, рассматривается методика оценки селеопасности с использованием статистико-экспертного подхода на основе балльной оценки ключевых природных и антропогенных факторов. На примере бассейна реки Талды-Суу Тюпского района выполнен расчёт индекса селеопасности, позволяющий количественно оценить степень угрозы формирования селевых процессов на данной территории.

Ключевые слова: цифровая карта; гидрологическая модель; селеопасность; индекс селеопасности; балльная оценка; расчет; Талды-Суу; осадки; чрезвычайные ситуации.

ЫСЫК-КӨЛ ОБЛАСТЫНЫН ТҮП РАЙОНУНУН ТАЛДЫ-СУУ ДАРЫЯСЫНЫН БАССЕЙНИНИН МИСАЛЫНДА СЕЛ КОРКУНУЧУНУН ИНДЕКСИН ЭСЕПТӨӨ

Г.А. Шабикова, А.А. Алмазбекова

Аннотация. Бул макалада Кванттык ГИСтин жардамы менен санариптик карталар түзүлөт, негизги табигый жана антропогендик факторлорго баллдык баа берүүнүн негизинде статистикалык-эксперттик ыкманы колдонуу менен сель коркунучун баалоо методологиясы каралат. Түп районундагы Талды-Суу дарыясынын бассейнинин мисалында сел коркунучунун индекси эсептелет, бул аймактагы сел процесстеринин коркунучунун деңгээлин сандык баалоого мүмкүндүк берет.

Түйүндүү сөздөр: санариптик карта; гидрологиялык модель; сел коркунучу; сел коркунучунун индекси; баллдык баалоо; эсептөө; Талды-Суу; жаан-чачындар; өзгөчө кырдаалдар.

CALCULATION OF THE MUDFLOW HAZARD INDEX ON THE EXAMPLE OF THE TALDY-SUU RIVER BASIN OF THE TYUPSKY DISTRICT OF THE ISSYK-KUL REGION

G.A. Shabikova, A.A. Almazbekova

Abstract. This article creates digital maps using Quantum GIS, considers the methodology for assessing mudflow hazard using a statistical-expert approach based on a point assessment of key natural and anthropogenic factors. Using the example of the Taldy-Suu River basin in the Tyupsky district, the mudflow hazard index is calculated, allowing a quantitative assessment of the degree of threat of mudflow processes in this area.

Keywords: digital map; hydrological model; mudflow hazard; mudflow hazard index; point assessment; calculation; Taldy-Suu; precipitation; emergency situations.

Введение. Селевые процессы представляют собой одну из наиболее опасных природных угроз в горных районах Кыргызстана, так как 90 % рельефа составляют горы. Горные участки подтверждены селевым потокам в период паводков и летних ливней. Основные зоны, где формируются сели, находятся в среднегорье и предгорьях, и главной причиной селей являются климатические изменения [1].

Сели представляют одну из значимых угроз для населения и экологической системы. По данным МЧС Кыргызской Республики ежегодно регистрируются до 150 селевых происшествий [2].

Для эффективного планирования природоохранных и инженерных мероприятий необходимы количественные оценки риска селей. Одним из таких инструментов является индекс селеопасности, рассчитываемый по методике балльной оценки факторов, основанной на статистико-экспертной системе весов и баллов [3].

Прежде всего было сделано гидрологическое моделирование реки Талды-Суу по программе Quantum GIS, при котором использовались инструменты пространственного анализа, гидрологического анализа на основе цифровой модели рельефа (рисунки 1, 2).

Метод балльной оценки факторов предполагает выделение значимых параметров и присвоение им весов и баллов. Расчёт производится по формуле:

$$HCO = \sum_{i=0}^{n} W_i B_i,$$

гле:

Wi – весовой коэффициент i-го фактора;

Ві – балльная оценка і-го фактора (по шкале от 1 до 5);

n – количество факторов.

В исследовании использованы данные топографических, геологических и климатических карт бассейна р. Талды-Суу (таблицы 1, 2).

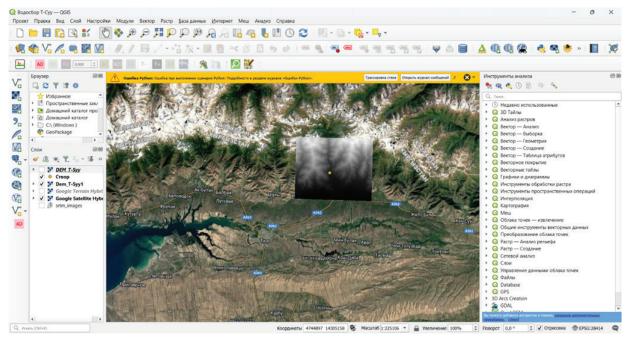


Рисунок 1 – Создание цифровой карты Восточной части оз. Иссык-Куль

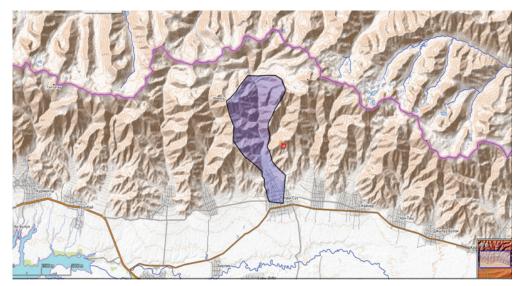


Рисунок 2 – Карта водосбора реки Талды-Суу

Таблица 1 – Выбранные факторы и их весовые коэффициенты

№ п/п	Фактор	Bec (W)
1	Уклон склонов	0,20
2	Геологическая структура	0,10
3	Тип почвы и породы	0,10
4	Количество осадков	0,25
5	Растительность	0,10
6	Деятельность человека	0,10
7	Очаги селевых масс	0,15

Таблица 2 – Балльная оценка факторов

№ п/п	Фактор	Баллы (В)	Примечание
1	Уклон склонов	5	Уклоны >30°
2	Геологическая структура	4	Трещиноватость высокая
3	Тип почвы и пород	3	Средняя эрозионная
4	Количество осадков	5	>800 мм/год
5	Растительность	2	Скудная
6	Деятельность человека	4	Активная
7	Очаги селевых масс	5	Наличие

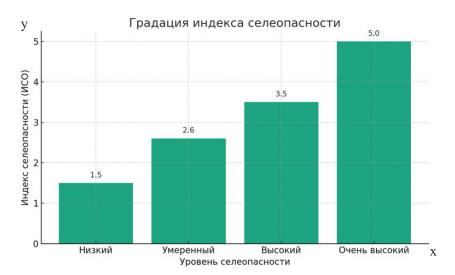


Рисунок 3 – Градация индекса селеопасности

На основании метода бальной оценки указанных выше факторов сделаем расчет индекса селеопасности по формуле:

$$MCO = (0.20.5) + (0.10.4) + (0.10.3) + (0.25.5) + (0.10.2) + (0.10.4) + (0.15.5) = 4.30.$$

Важным фактором в оценке селеопасности является дифференсация селевых бассейнов на различные уровни [4].

На рисунке 3 представлен график градации индекса селеопасности. По оси X отображены уровни селеопасности, а по оси Y — соответствующие значения индекса (верхние границы диапазонов), согласно которому река Талды -Суу относится к высокому уровню селеопасности.

Выводы. Таким образом, полученное значение индекса селеопасности равно 4.30, что соответствует очень высокому уровню селеопасности реки Талды-Суу.

Результаты расчета демонстрируют высокую степень угрозы селевых процессов в бассейне р. Талды-Суу. Метод балльной оценки факторов позволяет оперативно и достаточно точно определить приоритетные зоны риска. Полученные данные могут служить основой для разработки мероприятий по защите территории, в том числе инженерных и организационных мер по обеспечению безопасности территорий.

Поступила: 23.07.2025; рецензирована: 06.08.2025; принята: 25.07.2025.

Литература

- 1. Перов В.Ф. Селеведение: учебн. пособие / В.Ф. Перов. М.: Геогр. факультет МГУ, 2012.
- 2. Национальный отчет по селевой опасности 2022 г. // Сайт МЧС КР, Служба «Сельводзащита». URL: https://www.mchs.gov.kg/ru/structures_old/kr-okm-karashtuu-sel-zhana-suu-tashkyndarynan-korgoo-mamlekettik-agenttigi (дата обращения: 25.07.2025).
- 3. Мониторинг, прогнозирование опасных процессов и явлений на территории Кыргызской Республики. Часть III. Научно-исследовательские разработки в области мониторинга и прогнозирования ЧС. Бишкек: МЧС КР, 2025.
- 4. *Анахаев К.Н.* Дифференциация селеопасных бассейнов горных и предгорных водотоков / К.Н. Анахаев, О.Л. Антоненко // Природообустройство. 2014. № 3.